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Superconducting circuits fabricated using the widely used shadow evaporation technique can contain unin-
tended junctions that change their quantum dynamics. We discuss a superconducting flux qubit design that
exploits the symmetries of a circuit to protect the qubit from unwanted coupling to the noisy environment, in
which the unintended junctions can spoil the quantum coherence. We present a theoretical model based on a
recently developed circuit theory for superconducting qubits and calculate relaxation and decoherence times
that can be compared with existing experiments. Furthermore, the coupling of the qubit to a circuit resonance
(plasmon modgis explained in terms of the asymmetry of the circuit. Finally, possibilities for prolonging the
relaxation and decoherence times of the studied superconducting qubit are proposed on the basis of the
obtained results.
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[. INTRODUCTION the possibility to couple the qubit to an external harmonic
oscillator(plasmon modgand thus to entangle the qubit with

SuperconductingdSC) circuits in the regime where the another degree of freedof.For an inductively coupled
Josephson enerdy; dominates the charging ener§y rep-  SQUID2* a small geometrical asymmetry, i.e., a small im-
resent one of the currently studied candidates for a solid-statealance of self-inductances in a SQUID loop combined with
qubit! Several experiments have demonstrated the quantuthe same imbalance for the mutual inductance to the qubit, is
coherent behavior of a SC flux quBit* and recently, coher- not sufficient to cause decoherence at zero bias cuttent.
ent free-induction decayRamsey fringg oscillations have junction asymmetry, i.e., a difference in critical currents in
been observedlThe coherence tim&, extracted from these the SQUID junctiond. andR, would in principle suffice to
data was reported to be around 20 ns, somewhat shorter thaause decoherence at zero bias current. However, in practice,
expected from theoretical estimafe8. In more recent the SQUID junctions are typically large in area and thus their
experiments? it was found that the decoherence tifigcan  critical currents are rather well controlle@h the system
be increased up to approximately 120 ns by applying a largstudied in Ref. 10, the junction asymmetry<$%); there-
dc bias currenfabout 80% of the superconducting quantumfore, the latter effect turns out to be too small to explain the
interference devicéSQUID) junctions’ critical curren experimental findings.

A number of decoherence mechanisms can be important, An important insight in the understanding of decoherence
being both intrinsic to the Josephson junctidesg., oxide in the circuit design proposed in Ref. 5 is that it contains
barrier defects or vortex motion, and externale.g., current  another asymmetry, caused by its double-layer structure. The
fluctuations from the external control circuits such as currentlouble-layer structure is an artifact of the fabrication method
sources®912Here, we concentrate on the latter effect, i.e.,used to produce SC circuits with aluminum/aluminum oxide
current fluctuations, and use a recently developed circuifosephson junctions, the so-called shadow evaporation tech-
theory*? to analyze the circuit studied in the experiment.  nique. Junctions produced with this technique will always

The SC circuit studied in Ref. Gee Fig. 1is designed to
be immune to current fluctuations from the current bias line

due to its symmetry properties; at zero dc bigs=0), and R 1 |°,>
independent of the applied magnetic field, a small fluctuating E_ 2 (' —
currentédlg(t) caused by the finite impedance of the external 3

control circuit(the current sourges divided equally into the L >

two arms of the SQUID loop and no net current flows

through the three-junction qubit line. Thus, in the ideal cir- g1 1. schematic of the circuit. Crosses denote Josephson junc-
cuit (Fig. 1), the qubit is protected from decoherence due tQjons. The outer loop with two junctiorsandR forms a dc SQUID
current fluctuations in the bias current line. This result alSGnat is used to read out the qubit. The state of the qubit is deter-
follows from a systematic analysis of the circtitHowever,  mined by the orientation of the circulating current in the small loop,
asymmetries in the SQUID loop may spoil the protection ofcomprising the junctions 1, 2, and 3, one of which has a slightly
the qubit from decoherence. The breaking of the SQUID’ssmaller critical current than the others. A bias currénican be
symmetry has other very interesting consequences, notablpplied as indicated for readout.
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FIG. 2. Schematics of Josephson junctions produced by the
shadow evaporation technique, connecting the upper with the lower
aluminum layer. Shaded regions represent the aluminum oxide.

qubit

& SQUID G

Zg(w) Ol

connect the top layer with the bottom layésee Fig. 2
Thus, while circuits such as in Fig. 1 can be produced with
this technique, strictly speaking, loops will always contain an  FIG. 4. External circuit attached to the quiffig. 1) that allows
even number of junctions. In order to analyze the implica-the application of a bias currehy for qubit readout. The inductance
tions of the double-layer structure for the circuit in Fig. 1, we Lsn and capacitanc€s, form theshell circuit andZ(«) is the total
draw the circuit agaifisee Fig. 8a)], but this time with sepa- impedance of the current sourcks). The case where a voltlage .
rate upper and lower layers. Every piece of the upper layefource is used to generate a current can be reduced to this using
will be connected with the underlying piece of the lower Norton's theorem.

layer via an “unintentional” Josephson junction. However,

these extra junctions typically have large areas and thereforgal circuit; see Fig. $at Ig=0; this coupling is absent for a
large critical currents; thus, their Josephson energy can oftesymmetric circuit.

be neglected. Since we are only interested in the lowest-order This article is organized as follows. In Sec. I, we derive
effect of the double-layer structure, we neglect all unintenthe Hamiltonian of the qubit, taking into account its double-
tional junctions in this sense; therefore, we arrive at the cirdayer structure. We use this Hamiltonian to calculate the re-
cuit [Fig. 3(b)] without extra junctions. We notice however, laxation and decoherence times as a function of the applied
that this resulting circuit is distinct from the “ideal” circuit bias curren{Sec. Ill) and to derive an effective Hamiltonian
Fig. 1, which does not reflect the double-layer structure. Irfor the coupling of the qubit to a plasmon mode in the read-
the real circuit[Fig. 3(b)], the symmetry between the two out circuit(Sec. V). Finally, Sec. V contains a short discus-
arms of the dc SQUID is broken, and thus it can be expectedion of our result and possible lessons for future SC qubit
that bias current fluctuations cause decoherence of the quisiesigns.

at zero dc bias currentg=0. This effect is particularly im-

portant in the circuit discussed in Refs. 5 and 10 since the Il. HAMILTONIAN

coupling between the qubit and the SQUID is dominated by
the kinetic inductance of the shared line, and thus is stronglyin

gsgfm:netriécl:, hr.a}]h‘?r than tby Othe geiomettr)icl mUt.lIJIalHamiltonian of the circuit Fig. @) can be found using the
inauctance, which IS Ssymmetric. Dur analysis below Will - q;c it theory developed in Ref. 12. To this end, we first draw

Sr?OW thlslquag_tltgnvely_;?]ndh will allqw us tlodcon}par?] Ogrthe circuit graph(Fig. 5 and find a tree of the circuit graph
theoretical predictions with the experimental data for the e'containing all capacitors and as few inductors as possible
coherence times as a function of the bias current. Furthe

[ . .. .
more, we will theoretically explain the coupling of the qubit (Fig. 6). A tree of a graph is a subgraph containing all of its

) . nodes but no loops. By identifying the fundamental Idéps
to a plasma mode in the readout circQUID plus exter- in the circuit graph(Fig. 5 we obtain the loop submatrices

In order to model the decoherence of the qubit, we need to
d its Hamiltonian and its coupling to the environment. The

(a) . S -1 1 0

j -1 1 0
AR prRx Feo=| -1 1 |, Fcz=-Fcs=| 0 |, (1)

§ g 0 -1 1

0 -1 0

(b) S
‘ 0 -1 1
— %  —

fae/// Fie={ 0 -1|, Fez=-Fxe=|1]. (2

-1 1 0

FIG. 3. (a) Double-layer structure. Dashed blue lines represent! N€ chord(L) and tree(K) inductance matrices are taken to
the lower, solid red lines the upper SC layer, and crosses indicatee
Josephson junctions. The thick crosses are the intended junctions,

while the thin crosses are the unintended distributed junctions due L/2 M/4 Lz M4 M
to the double-layer structuréb) Simplest circuit model of the L :( , ) Lg=(M/i4 L'/72 0 [, (3
double-layer structure. The symmetry between the upper and lower M/4 L'/2 M. 0 L

I I

arms of the SQUID has been broken by the qubit line comprising
three junctions. Thick black lines denote pieces of the SC in whichwhereL, L', andL; are, respectively, the self-inductances of
the upper and lower layer are connected by large-area junctions. the qubit loop in the upper layer, the SQUID, and qubit loop
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7, right) where the Josephson inductances are given Lby
L, =dy/2ml;, andl; is the critical current of théth junction.
In Eq. (6), we have also introduced the effective self-
inductances of the qubit and SQUID and the effective qubit-
K, et SQUID mutual inductance, given by
ry
K
Lo=L , 7
L Q7 T4(1+L'IL+ 2MIL) @)
O <
> I S (8)

Ls= I‘2(1 +2L/L)°
FIG. 5. The network graph of the circiiffigs. 3b) and 4. Dots

indicate the nodes, lines the branches of the graph; an arrow indi-
cates the orientation of a branch. Thick lines labeledenote an Mgs=-L ,
RSJ element; i.e., a Josephson junction shunted by a capacitor and 2(1+M/L+2M/L)
a resistor. Lines labeled;, andK; denote inductance&y,; the ex-
ternal impedance, including the shell circuit of Fig. 4, dgds the
current source.

K

(9)

and the coupling constants between the bias current and the
qubit and the left and right SQUID phases,

Mo =& (1 +L'/L+2M/L)(1 - 2M//L), (10)
in the lower layer, and andM; are the mutual inductances
between the qubit and the SQUID and between the upper and 1 1 1
lower layers in the qubit loop, respectively. The tree-chord m_ = 27 25" Mg=- 27 25" (1)
mutual inductance matrix is taken to be
0 M4 0 with the definitions
w=\yvia o o) (4) k=1 +AL(L+L+2M)/L2+2(L + M - 2M)/L
The Hamiltonian in terms of the SC phase differences - (M+2M)7/L2, (12)
=(¢1, 92,03, ¢, pr) across the Josephson junctions and their
conjugate variables, the capacitor chargs is found to 0= wl(1+M/L+2M/L)(1 - 2Mi/L). (13
be'2 The sume; +¢,+ @5 is the total phase difference across the
1 1 Dy |2 qubit line containing functiongd,, J,, and J;, wherease,
Hs=5QcC Q| 5 U(e), (5 +¢gis the sum of the phase differences in the SQUID loop.
FurthermoreC=diagC,C,C,C’,C’) is the capacitance ma-
with the potential trix, C and C' being the capacitances of the qubit and
1 1 SQUID junctions, respectively.
U(p) = -, —CoSp; + — (@1 + @y + @3 — )2 The working point is given by the tripléf,f’,lg), i.e., by
i Lo 2Lq the bias currentg, and by the dimensionless external mag-

1 netic fluxes threading the qubit and SQUID loops,
+ I((p,_ + - )2 =2m &,/ Py andf’ =27 O /D, We will work in a region of
S parameter space where the potentiélp) has a double-well

1 , shape, which will be used to encode the logical qubit states
+M—(<P1+<Pz+¢3—f)(¢L+<PR—f) 10y and|1).
s The classical equations of motion, including dissipation,
2m are
+ c}T'B[mQ(QDl + @y + @3) + M@ +Mgeg], (6)
0 U
Co=———uK+m(m-¢), (14)
® < g Jo
G where convolution is defined &6+g)(t)=/*_ f(t—ng(ndr.
The vectorm is given by
K
C3 m :A(rnQ,rnQ,rnQ,mL,mR), (15)
K, G K andA is chosen such tham|=1. For the coupling constant
. ® w, we find

FIG. 6. Atree of the circuit graptFig. 5. A tree is a subgraph &= K 2L™H3(L+ L’ +2M)%(L + M = 2M)*+ [2L;(L + L’

connecting all nodes, and containing no loops. Here, the tree was i YR EOMAYRAT12490 (1 17
chosen to contain all capacito@ (from the RSJ elementand as 2M) +L(L" = 2M))= M(M + 2M)) "+ [L7+ 2Li(L + L
few inductorsK; as possibldsee Ref. 1P +2M)+ L(L' + 2M = 2M;) — 2M;(M + 2M;) 12 (16)
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FIG. 7. Decoupling(red solid and symmetric(blue dashed
curves in thelg, f’) plane, wherdg is the applied bias current and

f'=2m &,/ D, is the dimensionless externally applied magnetic
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value of Iz where the symmetric and the decoupling lines
intersect coincides with the maximum of the symmetric line,
as can be understood from the following argument. Taking
the total derivative with respect tbg of the relation e
=U[¢y; f"(Ig),lg]-Uleq;f (Ig),1g]=0 on the symmetric
line, and using thaip, ; are extremal points dfJ, we obtain
n-Agdf’/dlg+(2m/Py)m-Ae=0 for some constant vector
n. Thereforem-A¢=0 (decoupling ling andn-A¢+# 0 im-
plies gt/ 9lg=0.

For the numerical calculations throughout this paper, we
use the estimated experimental parameters from Refs. 10 and
13:L=25 pH,L'=45 pH,M=7.5 pH,L;=10 pH,M;=4 pH,
lo =lcr=4.2 uA, and lgi=lgo/a=1.3=05uA with «
=0.8.

IIl. DECOHERENCE

flux threading the SQUID loop. Both curves are obtained from the

numerical minimization of the potential E¢6). The decoupling
line is determined using the condition-A¢=0, whereas the sym-
metric line follows from the conditior=0.

The dissipative quantum dynamics of the qubit will be
described using a Caldeira-Leggett moHelhich is consis-
tent with the classical dissipative equation of motion, Eq.
(14). We then quantize the combined system and bath Hamil-

The kernelK in the dissipative term is determined by the tonian and use the master equation for the superconducting

total external impedance; in the frequency domain,
iw
K(w) ==, 17
@=50 (17)
with the impedance
Z(0) = Zgy( o) +iwLiy, (18)

where we have defined the internal inductance as

1
Lim:—2[4Li(L+L’)(L+L’+2M)+2|_2|_'—|_|\/|2
4kl
— 4L'MM; - 8L'MZ = 8MM?+ L(2L% + 2L'M - M?
+4MM; - 8M2)], (19)
and where
1 1
Zext:<m+|wcsh> +Ia)Lsh (20)

phasesp of the qubit and SQUID in the Born-Markov ap-
proximation to obtain the relaxation and decoherence times
of the qubit.

A. Relaxation time T,

The relaxation time of the qubit in the semiclassical
approximatiof® is given by

T‘l—A—Z(%ﬁm A |2Reicoth< E ) (21)
=g P20 2T/

where Agp= ¢y~ ¢, is the vector joining the two minima in
configuration space,

E= A%+ & (22)

is the energy splitting between the tvilowes) eigenstates
of the double well, ana is the tunnel coupling between the
two minima. We will evaluateT; on the symmetric line
wheree=0 and, thereforel=A. At the points in parameter

is the impedance of the external circuit attached to the qubitspace(lg, f’) wherem-A¢ vanishes, the system will be de-

including the shell circui{see Figs. 4 and)5For the param-
eter regime we are interested in,;~20 pH, ® <10 GHz,
andZ=50 ; therefore,wliy;<|Ze,, and we can us&(w)
~Zg(w).

We numerically find the double-well minime, and ¢,
for a range of bias currents between 0 angAl, external

coupled from the environmeriin lowest-order perturbation
theory), and thusT; — . From our numerical determination
of ¢g and ¢4, the decoupling flux’, at whichm-A¢=0, is
obtained as a function d§ (Fig. 7). From this analysis, we
can infer the paramete($s, f’) at whichT; will be maximal
and the relaxation time away from the divergence. In prac-

flux f'/27 between 1.33 and 1.35, and a qubit flux aroundtice, the divergence will be cut off by other effects which lie

f/27=0.5 (the ratiof/f’=0.395 is fixed by the areas of the
SQUID and qubit loops in the circitThe states localized at
¢, and ¢, are encoding the logicab) and|1) states of the

beyond the scope of this theory. However, we can fit the peak
value of T, from recent experiment3with a residual imped-
ance ofR¢s=3.5 M() that lies in a different part of the cir-

qubit. This allows us to find the set of parameters for whichcuit thanz (Fig. 5. We do not need to further specify the

the double well is symmetrice=U(¢y)—-U(¢,)=0. The
curvef’(lg) on which the double well is symmetric is plotted
in Fig. 7. Qualitatively,f"(I5) agrees well with the experi-
mentally measured symmetry lif€but it underestimates the
magnitude of the variation in fluk' as a function ofg. The

position of R in the circuit; we only make use of the fact
that it gives rise to an additional contribution to the relax-
ation rate of the form Eq(21) but with a vectorm,¢# m,
with msA@# 0 on the decoupling line. Without loss of
generality, we can adjuf,s such thatmsAe=1. Such a
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FIG. 8. Theoretical relaxation time, (solid lin€) as a function FIG. 9. Theoretical relaxation tim&; (solid line) as a function

of the applied bias curremg, along the symmetric lin€Fig. 7). The  of the applied magnetic fluk =®/d at zero bias currerflg=0)
value oflg whereT, diverges coincides with the intersection of the 5,ound the symmetric pointe=0). Experimentally obtained data
symmetric line with the decoupling line in Fig. 7; the divergence isfo; sample A in Ref. 10 are shown as triangle symbols with error

removed in the theory curve by including a residual impedance ofars. The theory curve from the semiclassiEaformula[Eq. (21)]
Res=3.5 M. The experimentally obtained data for sample A in g expected to be valid in the rande| <A, which corresponds

Ref. 10 are shown as triangle symbols with error bars. roughly to 1.33<f’/27w=<1.34. Experimental points outside the
plotted range off’, where the theory curve is not expected to be

residual coupling may, for example, originate from the sub-valid, are not shown.

gap resistances of the junctions. The relaxation timeb-

tained from Eq(21) as a function ofg along the symmetric i 2
line e=0 (Fig. 7) with a cutoff of the divergence bR is H==o,+ @gza8+ <—1 + @)02513, (26)
plotted in Fig. 8, along with the experimental data from 2 2A 47 2A

sample A in Ref. 10. In Fig. 9, we also pld (theory and ~

experiment as a function of the applied magnetic flux WhereA=A+e5/2A. On the symmetric linée;=0), the term
around the symmetric point at zero bias current. For the plotinear in dlg vanishes. However, there is a nonvanishing
of T, in Figs. 8 and 9, we have used the experimental pasecond-order termcé that contributes to dephasing on the
rameters A/h=5.9 GHz, Z(E)=Z.(E)=60Q, and T  symmetric line. Without making use of the correlators for

=100 mK. 813, we know that the pure dephasing raftgh will be pro-
portional to € (lg)*, which allows us to predict the depen-
B. Decoherence timeT, dence ofT,, on Ig. A discussion of the second-order dephas-
The decoherence tinig, is related to the relaxation time ing within the spin-boson model can be found in Ref. 16.
T, via However, to explain the order of magnitude of the experi-

1 1 1 mental resul® for T, correctly, the strong coupling to the
e A (23)  plasma mode may also play an important rdlé The result
T, Ty 2Ty presented here cannot be used to predict the absolute magni-

whereT,, denotes thépure dephasing time. On the symmet- tude ofT,, but we can obtain an estimate for the dependence

ric line f'=f"(lg) (see Fig. 7, the contribution to the dephas-

ing rate T, of order Ry/Z vanishes, whereRy=¢€?/h 150 o rr g et
~25.8 K) denotes the quantum of resistance. However, i :

there is a second-order contributieiRy/ Z)?, which we can

estimate as follows. The asymmetey U(¢g) —U(¢,) Of the 100

double well as a function of the bias currdgtat fixed ex- E
ternal flux f’ can be written in terms of a Taylor series &~ 50
aroundlg, as
e(lg) = o+ €015 + €012+ O(4lp)°, (24) 0
wheredlg(t)=1g(t)— 14 is the variation away from the dc bias I I — I -
currentI*B. The coefficientse(lg) can be obtained numeri- 0 1 2 3 4
cally fr(_)m the minimization _of th_e potenti&), Eq. (6)._ T_he I [pA]
approximate two-level Hamiltoniat\/2)oy+(e/2) o5 in its
eigenbasis is then, up m(ﬁlg), FIG. 10. Theoretical relaxation, pure dephasing, and decoher-
ence timesTy, T, andT,, respectively, as a function of applied bias
H= l\«"A2+ E0.= éo F—0 (25) currentlg, along the symmetric lin€Fig. 7). As in Fig. 8, we have
2 227 4N included decoherence from a residual impedancR.af3.5 MQ.
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of T, on the bias currenity via €;(Ig) =de/dlg obtained nu- 371 I T T I I | | |
merically from our circuit theory, via
e 2.95 |- -
T,(lg) sz;<0>(—€1 ° ) , @) &
€(0) O 29} -
where for dimensional reasons we can write the proportion—;*:1§
ality constant in terms of a zero-frequency resistaRgand 285 - -
an energyw (note, however, that this corresponds to one free
parameter in the theoryT,(0)/ €,(0) ~ 2w/ RGA% For the ggll 1 1 1111
plots of T, and T, in Fig. 10, we have used the resistance 0 1 2 3 4
Ry,=14500) and have chosem/27w~1 THz to approxi- Ig [uA]
mately fit the width of theT, curve. The respective relax-
ation, dephasing, and decoherence tinigsT,, and T, are FIG. 11. Plasma frequenays, as a function of the applied bias

plotted as a function of the bias currdgtin Figs. 8 and 10.  ¢yrrenti. The variation is due to the change the effective in Jo-
The calculated relaxation and decoherence tifieand  sephson inductances bsis varied.

T, agree well with the experimental d&tan their most im-

portant feature, the peak Bi=2.8 wA. This theoretical re- 2 B\ 22 1

sult does not involve fitting with any free parameters, since it Hen= Qs + <_0> Psh_ ﬁwsh( b + _)’ (30)
follows exclusively from the independently known values for 2Cy, \2m/) 2L, 2

the circuit inductances and critical currents. Moreover, we ) N

obtain good quantitative agreement between theory and e introducing the resonance frequeney;=1/LCp, the
periment forT, away from the divergence. The shape of thetota_l mductance{where' the SQUID junctions hzflve been lin-
T, and T, curves can be understood qualitatively from the®arized at the operating pojnt;=Lg,+L'/4+L;/[cOd¢)

theory. +cog¢Rr)], and the respective creation and annihilation op-
eratorsb’ andb, via
IV. COUPLING TO THE PLASMON MODE 2 h — |Z
o= = (b+bf) =2Vm/ =(b+b), (31)
In addition to decoherence, the coupling to the external Py V 2Cspwsh Ro

circuit (Fig. 4) can also lead to resonances in the microwaveWith the impedance,= \Lt/—Csh For the coupling between

spectrum of the system that originate from the coupling be: :

tween the qubit to a LC resonator formed by the SQUID, th th§ dg%'?r:z%%gslzp Syasstigggfegrﬁfﬁ s:f])e i?lir;hee Q%!as(rgn on

inductancels, and capacitanc€s, of the “shell” circuit ~ _~ Doipar) 27 WeShobtain fr sh
— ~sh*0%s ’

(plasmon mode We have studied this coupling quantita-
tively in the framework of the circuit theory, by replacing d.\2 1

the circuit elementdg and Z in the circuit graph by the HSsh:(—O) — @M - @, (32
elementd_g, and Cg, in series, obtaining the graph matrices 2w/ Msh

wherem is given in Eq.(15) andMg,~Lg,+L'/4 (the exact

-11 0 expression foMgy, is a rational function ot and the circuit
-1 1 O inductances, which we will not display heréJsing Eq.(31)
-1 1 o0 0 -11 and the semiclassical approximation
= = O - 1 1
Feu o -1 1 | FrL : )
0 -1 0 -1 10 m-cpz—iozm -Agp + const, (33
0 0 -1

28) we arrive at

: Hssh=No(b+b"), (34
where the last row ifFc_ corresponds to the tree branCly,
and the rightmost column in botRc andFy, corresponds  with the coupling strength
to the loop closed by the chotd,, Neglecting decoherence,

the total Hamiltonian can be written as —(®\?* [Zg 1
AN=—Vm| — ——m-Ag. (35)
2’77 RQ MSh

H=Hs+Hsnt Hssh (29)
Note that this coupling vanishes along the decoupling line
whereHg, defined in Eq(5), describes the qubit and SQUID (Fig. 7) and also rapidly with the increase bf,
system. The Hamiltonian of the plasmon mode can be The complete two-level Hamiltonian then has the well-
brought into the second quantized form known Jaynes-Cummings form,
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V. DISCUSSION

200
We have found that the double-layer structure of SC cir-
100 cuits fabricated using the shadow evaporation technique can
m? drastically change the quantum dynamics of the circuit due
= 0 to the presence of unintended junctions. In particular, the
= double-layer structure breaks the symmetry of the Delft
-100 qubif® (see Fig. 1, and leads to relaxation and decoherence.
We explain theoretically the observed compensation of the
-200 asymmetry at highg (Ref. 10 and calculate the relaxation
and decoherence timé@g andT, of the qubit, plotted in Fig.
0 1 2 3 4 10. We find good quantitative agreement between theory and
Ip [puA] experiment in the value of the decoupling curréntwhere

the relaxation and decoherence timigsand T, reach their
FIG. 12. Coupling constant between the qubit and the plas- maximum. In future qubit designs, the asymmetry can be
mon mode. The coupling disappears at the crossing with the deco@voided by adding a fourth junction in series with the three
pling line (Fig. 7); i.e., whenm-A¢=0. qubit junctions. It has already been demonstrated that this
leads to a shift of the maxima @f, andT, close tolg=0, as
1 theoretically expected, and to an increase of the maximal
H=Aoy, + eo, + hwsh<bT b+ —) +Noy(b+b"). (36) values ofT; andT,.1°
2 The asymmetry of the circuit also gives rise to an inter-
esting coupling between the qubit and an LC resonance in
the external circuit(plasmon modg which has been ob-
served experimentalfy? and which we have explained theo-
retically. The coupling could potentially lead to interesting
ffects; e.g., Rabi oscillations or entanglement between the
qubit and the plasmon mode.

For the parameters in Ref. 1Qg,=12 pF andLy,=170 pH,
we find wgp~ 27X 2.9 GHz(see Fig. 11andZy,=5 ; thus,
V"Zsh/Ron.Ol. Note that the dependence of the Josephso
inductance(and thus oflL; and wg;) on the state of the qubit
leads to an ac Stark shift termo,b'b, which was neglected
in the coupling Hamiltonian Eq.36).

We find a coupling constant af= 210 MHz atlg=0. The
coupling constant as a function of the bias curignis plot- G. B. and D. P. D. V. would like to acknowledge the
ted in Fig. 12. The relatively high values afshould allow  hospitality of the Quantum Transport group at TU Delft
the study of the coupled dynamics of the qubit and the plaswhere this work was started. D. P. D. V. was supported in
mon mode. In particular, recently observed side resonancgsart by the National Security Agency and the Advanced Re-
with the sum and difference frequencies wg, (Ref. 13 can  search and Development Activity through Army Research
be explained in terms of the coupled dynaniigs|. (36)]. I Office contracts DAAD19-01-C-0056 and W911NF-04-C-
addition, it should be possible to tunesitu the coupling to  0098. P. B. acknowledges financial support from a European
the plasmon moda at will, using pulsed bias currents. Community Marie Curie fellowship.
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