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Superconducting circuits fabricated using the widely used shadow evaporation technique can contain unin-
tended junctions that change their quantum dynamics. We discuss a superconducting flux qubit design that
exploits the symmetries of a circuit to protect the qubit from unwanted coupling to the noisy environment, in
which the unintended junctions can spoil the quantum coherence. We present a theoretical model based on a
recently developed circuit theory for superconducting qubits and calculate relaxation and decoherence times
that can be compared with existing experiments. Furthermore, the coupling of the qubit to a circuit resonance
splasmon moded is explained in terms of the asymmetry of the circuit. Finally, possibilities for prolonging the
relaxation and decoherence times of the studied superconducting qubit are proposed on the basis of the
obtained results.
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I. INTRODUCTION

SuperconductingsSCd circuits in the regime where the
Josephson energyEJ dominates the charging energyEC rep-
resent one of the currently studied candidates for a solid-state
qubit.1 Several experiments have demonstrated the quantum
coherent behavior of a SC flux qubit,2–4 and recently, coher-
ent free-induction decaysRamsey fringed oscillations have
been observed.5 The coherence timeT2 extracted from these
data was reported to be around 20 ns, somewhat shorter than
expected from theoretical estimates.6–9 In more recent
experiments,10 it was found that the decoherence timeT2 can
be increased up to approximately 120 ns by applying a large
dc bias currentfabout 80% of the superconducting quantum
interference devicesSQUIDd junctions’ critical currentg.

A number of decoherence mechanisms can be important,
being both intrinsic to the Josephson junctionsse.g., oxide
barrier defects11 or vortex motiond, and externalse.g., current
fluctuations from the external control circuits such as current
sourcesd.6–9,12 Here, we concentrate on the latter effect, i.e.,
current fluctuations, and use a recently developed circuit
theory12 to analyze the circuit studied in the experiment.5

The SC circuit studied in Ref. 5ssee Fig. 1d is designed to
be immune to current fluctuations from the current bias line
due to its symmetry properties; at zero dc biassIB=0d, and
independent of the applied magnetic field, a small fluctuating
currentdIBstd caused by the finite impedance of the external
control circuitsthe current sourced is divided equally into the
two arms of the SQUID loop and no net current flows
through the three-junction qubit line. Thus, in the ideal cir-
cuit sFig. 1d, the qubit is protected from decoherence due to
current fluctuations in the bias current line. This result also
follows from a systematic analysis of the circuit.12 However,
asymmetries in the SQUID loop may spoil the protection of
the qubit from decoherence. The breaking of the SQUID’s
symmetry has other very interesting consequences, notably

the possibility to couple the qubit to an external harmonic
oscillatorsplasmon moded and thus to entangle the qubit with
another degree of freedom.13 For an inductively coupled
SQUID,2–4 a small geometrical asymmetry, i.e., a small im-
balance of self-inductances in a SQUID loop combined with
the same imbalance for the mutual inductance to the qubit, is
not sufficient to cause decoherence at zero bias current.12 A
junction asymmetry, i.e., a difference in critical currents in
the SQUID junctionsL andR, would in principle suffice to
cause decoherence at zero bias current. However, in practice,
the SQUID junctions are typically large in area and thus their
critical currents are rather well controlledsin the system
studied in Ref. 10, the junction asymmetry is,5%d; there-
fore, the latter effect turns out to be too small to explain the
experimental findings.

An important insight in the understanding of decoherence
in the circuit design proposed in Ref. 5 is that it contains
another asymmetry, caused by its double-layer structure. The
double-layer structure is an artifact of the fabrication method
used to produce SC circuits with aluminum/aluminum oxide
Josephson junctions, the so-called shadow evaporation tech-
nique. Junctions produced with this technique will always

FIG. 1. Schematic of the circuit. Crosses denote Josephson junc-
tions. The outer loop with two junctionsL andR forms a dc SQUID
that is used to read out the qubit. The state of the qubit is deter-
mined by the orientation of the circulating current in the small loop,
comprising the junctions 1, 2, and 3, one of which has a slightly
smaller critical current than the others. A bias currentIB can be
applied as indicated for readout.
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connect the top layer with the bottom layerssee Fig. 2d.
Thus, while circuits such as in Fig. 1 can be produced with
this technique, strictly speaking, loops will always contain an
even number of junctions. In order to analyze the implica-
tions of the double-layer structure for the circuit in Fig. 1, we
draw the circuit againfsee Fig. 3sadg, but this time with sepa-
rate upper and lower layers. Every piece of the upper layer
will be connected with the underlying piece of the lower
layer via an “unintentional” Josephson junction. However,
these extra junctions typically have large areas and therefore
large critical currents; thus, their Josephson energy can often
be neglected. Since we are only interested in the lowest-order
effect of the double-layer structure, we neglect all uninten-
tional junctions in this sense; therefore, we arrive at the cir-
cuit fFig. 3sbdg without extra junctions. We notice however,
that this resulting circuit is distinct from the “ideal” circuit
Fig. 1, which does not reflect the double-layer structure. In
the real circuitfFig. 3sbdg, the symmetry between the two
arms of the dc SQUID is broken, and thus it can be expected
that bias current fluctuations cause decoherence of the qubit
at zero dc bias current,IB=0. This effect is particularly im-
portant in the circuit discussed in Refs. 5 and 10 since the
coupling between the qubit and the SQUID is dominated by
the kinetic inductance of the shared line, and thus is strongly
asymmetric, rather than by the geometric mutual
inductance,4 which is symmetric. Our analysis below will
show this quantitatively and will allow us to compare our
theoretical predictions with the experimental data for the de-
coherence times as a function of the bias current. Further-
more, we will theoretically explain the coupling of the qubit
to a plasma mode in the readout circuitsSQUID plus exter-

nal circuit; see Fig. 4d at IB=0; this coupling is absent for a
symmetric circuit.

This article is organized as follows. In Sec. II, we derive
the Hamiltonian of the qubit, taking into account its double-
layer structure. We use this Hamiltonian to calculate the re-
laxation and decoherence times as a function of the applied
bias currentsSec. IIId and to derive an effective Hamiltonian
for the coupling of the qubit to a plasmon mode in the read-
out circuit sSec. IVd. Finally, Sec. V contains a short discus-
sion of our result and possible lessons for future SC qubit
designs.

II. HAMILTONIAN

In order to model the decoherence of the qubit, we need to
find its Hamiltonian and its coupling to the environment. The
Hamiltonian of the circuit Fig. 3sbd can be found using the
circuit theory developed in Ref. 12. To this end, we first draw
the circuit graphsFig. 5d and find a tree of the circuit graph
containing all capacitors and as few inductors as possible
sFig. 6d. A tree of a graph is a subgraph containing all of its
nodes but no loops. By identifying the fundamental loops12

in the circuit graphsFig. 5d we obtain the loop submatrices

FCL =1
− 1 1

− 1 1

− 1 1

0 − 1

0 − 1
2, FCZ = − FCB =1

0

0

0

1

0
2 , s1d

FKL = 1 0 − 1

0 − 1

− 1 1
2, FKZ = − FKB = 11

1

0
2 . s2d

The chordsLd and treesKd inductance matrices are taken to
be

L = S L/2 M/4

M/4 L8/2
D, L K = 1 L/2 M/4 Mi

M/4 L8/2 0

Mi 0 Li
2 , s3d

whereL, L8, andLi are, respectively, the self-inductances of
the qubit loop in the upper layer, the SQUID, and qubit loop

FIG. 2. Schematics of Josephson junctions produced by the
shadow evaporation technique, connecting the upper with the lower
aluminum layer. Shaded regions represent the aluminum oxide.

FIG. 3. sad Double-layer structure. Dashed blue lines represent
the lower, solid red lines the upper SC layer, and crosses indicate
Josephson junctions. The thick crosses are the intended junctions,
while the thin crosses are the unintended distributed junctions due
to the double-layer structure.sbd Simplest circuit model of the
double-layer structure. The symmetry between the upper and lower
arms of the SQUID has been broken by the qubit line comprising
three junctions. Thick black lines denote pieces of the SC in which
the upper and lower layer are connected by large-area junctions.

FIG. 4. External circuit attached to the qubitsFig. 1d that allows
the application of a bias currentIB for qubit readout. The inductance
Lsh and capacitanceCsh form theshell circuit, andZsvd is the total
impedance of the current sourcesIBd. The case where a voltage
source is used to generate a current can be reduced to this using
Norton’s theorem.

BURKARD, DIVINCENZO, BERTET, CHIORESCU, AND MOOIJ PHYSICAL REVIEW B71, 134504s2005d

134504-2



in the lower layer, andM andMi are the mutual inductances
between the qubit and the SQUID and between the upper and
lower layers in the qubit loop, respectively. The tree-chord
mutual inductance matrix is taken to be

L LK = S 0 M/4 0

M/4 0 0
D . s4d

The Hamiltonian in terms of the SC phase differencesw
=sw1,w2,w3,wL ,wRd across the Josephson junctions and their
conjugate variables, the capacitor chargesQC, is found to
be12

HS=
1

2
QC

TC−1QC + SF0

2p
D2

Uswd, s5d

with the potential

Uswd = − o
i

1

LJ;i
coswi +

1

2LQ
sw1 + w2 + w3 − fd2

+
1

2LS
swL + wR − f8d2

+
1

MQS
sw1 + w2 + w3 − fdswL + wR − f8d

+
2p

F0
IBfmQsw1 + w2 + w3d + mLwL + mRwRg, s6d

where the Josephson inductances are given byLJ;i
=F0/2pIc;i, andIc;i is the critical current of theith junction.
In Eq. s6d, we have also introduced the effective self-
inductances of the qubit and SQUID and the effective qubit-
SQUID mutual inductance, given by

LQ = L
k

4s1 + L8/L + 2M/Ld
, s7d

LS= L
k

2s1 + 2Li/Ld
, s8d

MQS= − L
k

2s1 + M/L + 2Mi/Ld
, s9d

and the coupling constants between the bias current and the
qubit and the left and right SQUID phases,

mQ = k−1s1 + L8/L + 2M/Lds1 – 2Mi/Ld, s10d

mL =
1

2
−

1

2d
, mR = −

1

2
−

1

2d
, s11d

with the definitions

k = 1 + 4LisL + L8 + 2Md/L2 + 2sL8 + M − 2Mid/L

− sM + 2Mid2/L2, s12d

d = k/s1 + M/L + 2Mi/Lds1 – 2Mi/Ld. s13d

The sumw1+w2+w3 is the total phase difference across the
qubit line containing functionsJ1, J2, and J3, whereaswL
+wR is the sum of the phase differences in the SQUID loop.
Furthermore,C=diagsC,C,C,C8 ,C8d is the capacitance ma-
trix, C and C8 being the capacitances of the qubit and
SQUID junctions, respectively.

The working point is given by the triplesf , f8 ,IBd, i.e., by
the bias currentIB, and by the dimensionless external mag-
netic fluxes threading the qubit and SQUID loops,f
=2p Fx/F0 and f8=2p Fx8 /F0. We will work in a region of
parameter space where the potentialUswd has a double-well
shape, which will be used to encode the logical qubit states
u0l and u1l.

The classical equations of motion, including dissipation,
are

Cẅ = −
]U

]w
− mK p msm · wd, s14d

where convolution is defined assf pgdstd=e−`
t fst−tdgstddt.

The vectorm is given by

m = AsmQ,mQ,mQ,mL,mRd, s15d

andA is chosen such thatum u =1. For the coupling constant
m, we find

m = k−2L−4h3sL + L8 + 2Md2sL + M − 2Mid2+ f2LisL + L8

+ 2Md + LsL8 − 2Mid− MsM + 2Midg2 + fL2 + 2LisL + L8

+ 2Md+ LsL8 + 2M − 2Mid − 2MisM + 2Midg2j. s16d

FIG. 5. The network graph of the circuitfFigs. 3sbd and 4g. Dots
indicate the nodes, lines the branches of the graph; an arrow indi-
cates the orientation of a branch. Thick lines labeledJi denote an
RSJ element; i.e., a Josephson junction shunted by a capacitor and
a resistor. Lines labeledLi andKi denote inductances,Zext the ex-
ternal impedance, including the shell circuit of Fig. 4, andIB is the
current source.

FIG. 6. A tree of the circuit graphsFig. 5d. A tree is a subgraph
connecting all nodes, and containing no loops. Here, the tree was
chosen to contain all capacitorsCi sfrom the RSJ elementsd and as
few inductorsKi as possiblessee Ref. 12d.
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The kernelK in the dissipative term is determined by the
total external impedance; in the frequency domain,

Ksvd =
iv

Zsvd
, s17d

with the impedance

Zsvd = Zextsvd + ivLint, s18d

where we have defined the internal inductance as

Lint =
1

4kL2f4LisL + L8dsL + L8 + 2Md + 2L2L8− LM2

− 4L8MMi − 8L8Mi
2 − 8MMi

2+ Ls2L28 + 2L8M − M2

+ 4MMi − 8Mi
2dg, s19d

and where

Zext = S 1

ZBsvd
+ ivCshD−1

+ ivLsh s20d

is the impedance of the external circuit attached to the qubit,
including the shell circuitssee Figs. 4 and 5d. For the param-
eter regime we are interested in,Lint<20 pH, v&10 GHz,
andZ*50 V; therefore,vLint! uZextu, and we can useZsvd
<Zextsvd.

We numerically find the double-well minimaw0 and w1
for a range of bias currents between 0 and 4mA, external
flux f8 /2p between 1.33 and 1.35, and a qubit flux around
f /2p.0.5 sthe ratio f / f8=0.395 is fixed by the areas of the
SQUID and qubit loops in the circuitd. The states localized at
w0 andw1 are encoding the logicalu0l and u1l states of the
qubit. This allows us to find the set of parameters for which
the double well is symmetric:e;Usw0d−Usw1d=0. The
curve f*sIBd on which the double well is symmetric is plotted
in Fig. 7. Qualitatively,f*sIBd agrees well with the experi-
mentally measured symmetry line,10 but it underestimates the
magnitude of the variation in fluxf8 as a function ofIB. The

value of IB where the symmetric and the decoupling lines
intersect coincides with the maximum of the symmetric line,
as can be understood from the following argument. Taking
the total derivative with respect toIB of the relation e
=Ufw0; f*sIBd ,IBg−Ufw1; f*sIBd ,IBg=0 on the symmetric
line, and using thatw0,1 are extremal points ofU, we obtain
n ·Dw] f* /]IB+s2p /F0dm ·Dw=0 for some constant vector
n. Therefore,m ·Dw=0 sdecoupling lined andn ·DwÞ0 im-
plies ]f* /]IB=0.

For the numerical calculations throughout this paper, we
use the estimated experimental parameters from Refs. 10 and
13: L=25 pH,L8=45 pH,M =7.5 pH,Li =10 pH,Mi =4 pH,
Ic;L= Ic;R=4.2 mA, and Ic;1= Ic;2/a= Ic;3=0.5 mA with a
.0.8.

III. DECOHERENCE

The dissipative quantum dynamics of the qubit will be
described using a Caldeira-Leggett model,14 which is consis-
tent with the classical dissipative equation of motion, Eq.
s14d. We then quantize the combined system and bath Hamil-
tonian and use the master equation for the superconducting
phasesw of the qubit and SQUID in the Born-Markov ap-
proximation to obtain the relaxation and decoherence times
of the qubit.

A. Relaxation time T1

The relaxation time of the qubit in the semiclassical
approximation15 is given by

T1
−1 =

D2

E2SF0

2p
D2

um · Dwu2Re
E

ZsEd
cothS E

2kBT
D , s21d

whereDw;w0−w1 is the vector joining the two minima in
configuration space,

E = ÎD2 + e2 s22d

is the energy splitting between the twoslowestd eigenstates
of the double well, andD is the tunnel coupling between the
two minima. We will evaluateT1 on the symmetric line
wheree=0 and, therefore,E=D. At the points in parameter
spacesIB, f8d wherem ·Dw vanishes, the system will be de-
coupled from the environmentsin lowest-order perturbation
theoryd, and thusT1→`. From our numerical determination
of w0 andw1, the decoupling fluxf8, at whichm ·Dw=0, is
obtained as a function ofIB sFig. 7d. From this analysis, we
can infer the parameterssIB, f8d at whichT1 will be maximal
and the relaxation time away from the divergence. In prac-
tice, the divergence will be cut off by other effects which lie
beyond the scope of this theory. However, we can fit the peak
value ofT1 from recent experiments10 with a residual imped-
ance ofRres.3.5 MV that lies in a different part of the cir-
cuit thanZ sFig. 5d. We do not need to further specify the
position ofRres in the circuit; we only make use of the fact
that it gives rise to an additional contribution to the relax-
ation rate of the form Eq.s21d but with a vectormresÞm,
with mres·DwÞ0 on the decoupling line. Without loss of
generality, we can adjustRres such thatmres·Dw=1. Such a

FIG. 7. Decouplingsred solidd and symmetricsblue dashedd
curves in thesIB, f8d plane, whereIB is the applied bias current and
f8=2p Fx8 /F0 is the dimensionless externally applied magnetic
flux threading the SQUID loop. Both curves are obtained from the
numerical minimization of the potential Eq.s6d. The decoupling
line is determined using the conditionm ·Dw=0, whereas the sym-
metric line follows from the conditione=0.
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residual coupling may, for example, originate from the sub-
gap resistances of the junctions. The relaxation timeT1 ob-
tained from Eq.s21d as a function ofIB along the symmetric
line e=0 sFig. 7d with a cutoff of the divergence byRres is
plotted in Fig. 8, along with the experimental data from
sample A in Ref. 10. In Fig. 9, we also plotT1 stheory and
experimentd as a function of the applied magnetic flux
around the symmetric point at zero bias current. For the plots
of T1 in Figs. 8 and 9, we have used the experimental pa-
rameters D /h=5.9 GHz, ZsEd.ZextsEd=60 V, and T
=100 mK.

B. Decoherence timeT2

The decoherence timeT2 is related to the relaxation time
T1 via

1

T2
=

1

Tf

+
1

2T1
, s23d

whereTf denotes thespured dephasing time. On the symmet-
ric line f8= f*sIBd ssee Fig. 7d, the contribution to the dephas-
ing rate Tf

−1 of order RQ/Z vanishes, whereRQ=e2/h
<25.8 kV denotes the quantum of resistance. However,
there is a second-order contribution~sRQ/Zd2, which we can
estimate as follows. The asymmetrye=Usw0d−Usw1d of the
double well as a function of the bias currentIB at fixed ex-
ternal flux f8 can be written in terms of a Taylor series
aroundIB

* , as

esIBd = e0 + e1dIB + e2dIB
2 + OsdIBd3, s24d

wheredIBstd= IBstd− IB
* is the variation away from the dc bias

current IB
* . The coefficientseisIBd can be obtained numeri-

cally from the minimization of the potentialU, Eq. s6d. The
approximate two-level HamiltoniansD /2dsX+se /2dsZ in its
eigenbasis is then, up toOsdIB

3d,

H =
1

2
ÎD2 + e2sz =

D

2
sz +

e2

4D
sz, s25d

H =
D̃

2
sz +

e0e1

2D
szdIB + S e1

2

4D
+

e0e2

2D
DszdIB

2 , s26d

whereD̃=D+e0
2/2D. On the symmetric linese0=0d, the term

linear in dIB vanishes. However, there is a nonvanishing
second-order term~e1

2 that contributes to dephasing on the
symmetric line. Without making use of the correlators for
dIB

2, we know that the pure dephasing rateTf
−1 will be pro-

portional to e1sIBd4, which allows us to predict the depen-
dence ofTf on IB. A discussion of the second-order dephas-
ing within the spin-boson model can be found in Ref. 16.
However, to explain the order of magnitude of the experi-
mental result10 for Tf correctly, the strong coupling to the
plasma mode may also play an important role.10,17The result
presented here cannot be used to predict the absolute magni-
tude ofTf, but we can obtain an estimate for the dependence

FIG. 8. Theoretical relaxation timeT1 ssolid lined as a function
of the applied bias currentIB, along the symmetric linesFig. 7d. The
value ofIB whereT1 diverges coincides with the intersection of the
symmetric line with the decoupling line in Fig. 7; the divergence is
removed in the theory curve by including a residual impedance of
Rres=3.5 MV. The experimentally obtained data for sample A in
Ref. 10 are shown as triangle symbols with error bars.

FIG. 9. Theoretical relaxation timeT1 ssolid lined as a function
of the applied magnetic fluxf8=Fx8 /F0 at zero bias currentsIB=0d
around the symmetric pointse=0d. Experimentally obtained data
for sample A in Ref. 10 are shown as triangle symbols with error
bars. The theory curve from the semiclassicalT1 formula fEq. s21dg
is expected to be valid in the rangeue u &D, which corresponds
roughly to 1.33& f8 /2p&1.34. Experimental points outside the
plotted range off8, where the theory curve is not expected to be
valid, are not shown.

FIG. 10. Theoretical relaxation, pure dephasing, and decoher-
ence timesT1, Tf, andT2, respectively, as a function of applied bias
currentIB, along the symmetric linesFig. 7d. As in Fig. 8, we have
included decoherence from a residual impedance ofRres=3.5 MV.
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of Tf on the bias currentIB via e1sIBd=de /dIB obtained nu-
merically from our circuit theory, via

Tf
−1sIBd < Tf

−1s0dS e1sIBd
e1s0d D

4

, s27d

where for dimensional reasons we can write the proportion-
ality constant in terms of a zero-frequency resistanceR0 and
an energyv̄ snote, however, that this corresponds to one free
parameter in the theoryd, Tf

−1s0d /e1s0d<2v̄3/R0
2D2. For the

plots of Tf and T2 in Fig. 10, we have used the resistance
R0=1450V and have chosenv̄ /2p<1 THz to approxi-
mately fit the width of theT2 curve. The respective relax-
ation, dephasing, and decoherence timesT1, Tf, andT2 are
plotted as a function of the bias currentIB in Figs. 8 and 10.

The calculated relaxation and decoherence timesT1 and
T2 agree well with the experimental data10 in their most im-
portant feature, the peak atIB<2.8 mA. This theoretical re-
sult does not involve fitting with any free parameters, since it
follows exclusively from the independently known values for
the circuit inductances and critical currents. Moreover, we
obtain good quantitative agreement between theory and ex-
periment forT1 away from the divergence. The shape of the
T1 and T2 curves can be understood qualitatively from the
theory.

IV. COUPLING TO THE PLASMON MODE

In addition to decoherence, the coupling to the external
circuit sFig. 4d can also lead to resonances in the microwave
spectrum of the system that originate from the coupling be-
tween the qubit to a LC resonator formed by the SQUID, the
inductanceLsh, and capacitanceCsh of the “shell” circuit
splasmon moded. We have studied this coupling quantita-
tively in the framework of the circuit theory,12 by replacing
the circuit elementsIB and Z in the circuit graph by the
elementsLsh andCsh in series, obtaining the graph matrices

FCL =1
− 1 1 0

− 1 1 0

− 1 1 0

0 − 1 1

0 − 1 0

0 0 − 1

2, FKL = 1 0 − 1 1

0 − 1 1

− 1 1 0
2 ,

s28d

where the last row inFCL corresponds to the tree branchCsh,
and the rightmost column in bothFCL andFKL corresponds
to the loop closed by the chordLsh. Neglecting decoherence,
the total Hamiltonian can be written as

H = HS+ Hsh+ HS,sh, s29d

whereHS, defined in Eq.s5d, describes the qubit and SQUID
system. The Hamiltonian of the plasmon mode can be
brought into the second quantized form

Hsh=
Qsh

2

2Csh
+ SF0

2p
D2wsh

2

2Lt
= "vshSb†b +

1

2
D , s30d

by introducing the resonance frequencyvsh=1/ÎLtCsh, the
total inductanceswhere the SQUID junctions have been lin-
earized at the operating pointd Lt.Lsh+L8 /4+LJ8 / fcosswLd
+cosswRdg, and the respective creation and annihilation op-
eratorsb† andb, via

wsh=
2p

F0
Î "

2Cshvsh
sb + b†d = 2ÎpÎZsh

RQ
sb + b†d, s31d

with the impedanceZsh=ÎLt /Csh. For the coupling between
the qubit/SQUID systemsthe phaseswd and the plasmon
modesthe phasewsh associated with the charge onCsh, Qsh
=CshF0ẇsh/2p, we obtain

HS,sh= SF0

2p
D2 1

Msh
wshm · w, s32d

wherem is given in Eq.s15d andMsh<Lsh+L8 /4 sthe exact
expression forMsh is a rational function ofLsh and the circuit
inductances, which we will not display hered. Using Eq.s31d
and the semiclassical approximation

m · w < −
1

2
szm · Dw + const, s33d

we arrive at

HS,sh= lszsb + b†d, s34d

with the coupling strength

l = − ÎpSF0

2p
D2ÎZsh

RQ

1

Msh
m · Dw. s35d

Note that this coupling vanishes along the decoupling line
sFig. 7d and also rapidly with the increase ofLsh.

The complete two-level Hamiltonian then has the well-
known Jaynes-Cummings form,

FIG. 11. Plasma frequencyvsh as a function of the applied bias
current IB. The variation is due to the change the effective in Jo-
sephson inductances asIB is varied.
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H = Dsx + esz + "vshSb†b +
1

2
D + lszsb + b†d. s36d

For the parameters in Ref. 10,Csh=12 pF andLsh=170 pH,
we findvsh<2p32.9 GHzssee Fig. 11d andZsh=5 V; thus,
ÎZsh/RQ<0.01. Note that the dependence of the Josephson
inductancesand thus ofLt andvshd on the state of the qubit
leads to an ac Stark shift term~szb

†b, which was neglected
in the coupling Hamiltonian Eq.s36d.

We find a coupling constant ofl<210 MHz atIB=0. The
coupling constant as a function of the bias currentIB is plot-
ted in Fig. 12. The relatively high values ofl should allow
the study of the coupled dynamics of the qubit and the plas-
mon mode. In particular, recently observed side resonances
with the sum and difference frequenciesE±vsh sRef. 13d can
be explained in terms of the coupled dynamicsfEq. s36dg. In
addition, it should be possible to tunein situ the coupling to
the plasmon model at will, using pulsed bias currents.

V. DISCUSSION

We have found that the double-layer structure of SC cir-
cuits fabricated using the shadow evaporation technique can
drastically change the quantum dynamics of the circuit due
to the presence of unintended junctions. In particular, the
double-layer structure breaks the symmetry of the Delft
qubit5 ssee Fig. 1d, and leads to relaxation and decoherence.
We explain theoretically the observed compensation of the
asymmetry at highIB sRef. 10d and calculate the relaxation
and decoherence timesT1 andT2 of the qubit, plotted in Fig.
10. We find good quantitative agreement between theory and
experiment in the value of the decoupling currentIB where
the relaxation and decoherence timesT1 and T2 reach their
maximum. In future qubit designs, the asymmetry can be
avoided by adding a fourth junction in series with the three
qubit junctions. It has already been demonstrated that this
leads to a shift of the maxima ofT1 andT2 close toIB=0, as
theoretically expected, and to an increase of the maximal
values ofT1 andT2.
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The asymmetry of the circuit also gives rise to an inter-
esting coupling between the qubit and an LC resonance in
the external circuitsplasmon moded, which has been ob-
served experimentally,13 and which we have explained theo-
retically. The coupling could potentially lead to interesting
effects; e.g., Rabi oscillations or entanglement between the
qubit and the plasmon mode.
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